
Online Appendix - Curation Algorithms and Filter Bubbles in

Social Networks

A Robustness to Timing

We test the robustness of our model to the timing of the algorithm by letting the platform set βQ,

βD and t simultaneously, followed by the receiver setting ϕ.

Using the function Eϕ from Equation 52, we find two candidates for the optimal connectivity

ϕ set by the receivers: ϕ∗ =
βQq+βQ−t

2βD
and ϕ∗ =

βQ(1+q−2c)+t
4βQ−2βD .

Plugging back into the receiver’s utility and maximizing over t, βQ and βD, the maximum is

achieved when β∗Q = β∗D and when t∗ = β∗Q · c. The two potential solutions for ϕ∗ presented above

also coincide when the receiver’s utility is maximized.

When β∗Q = 1, we find that the PA algorithm from Section 7.1 sets exactly the same set of

parameters and achieves the same profit.

B Convex Consumption Cost

In this section, we change the main model to allow for a convex content consumption cost function.

Instead of assuming a constant c cost for each consumer piece of content, we introduce the cost

function C(), where C(J) denotes the total cost of reading J items. We assume that C() is

increasing and convex enough for an interior solution to exist. A simple example of a convex cost

function that will satisfy this is C(J) = cJ2/2. All other specification of the model remain the

same as those of the main model presented in Section 3. We next analyze how the optimal filtering

and friendship decisions change.
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B.1 Benchmark

When there is no filtering algorithm at work, we start by deriving the optimal number of content

items to be consumed, J . Given ϕ, the consumer maximizes

E(πR) = J · (E(Uj |ϕ))− C(J) = J · (q + 1/2− ϕ)− C(J) (1)

subject to J < ϕαN in the last stage. Let J∗(ϕ) denote the optimum which is given by the solution

of C ′(J) = q + 1/2 − ϕ when ϕ is large enough or J∗(ϕ) = ϕαN when ϕ is small. In the stage

before, the consumer maximizes J∗(ϕ)(q+1/2−ϕ)−C(J∗(ϕ)) to obtain the optimal ϕ∗. We obtain

the following result:

Lemma A1. Consumers always choose to read all content available in equilibrium: J∗(ϕ∗) = ϕ∗αN

Proof. Assume on the contrary that J∗(ϕ∗) < ϕ∗αN . Decreasing ϕ to ϕ′ = J∗(ϕ∗) would lead to

a strictly higher payoff, a contradiction.

Using the lemma, we can simplify the maximization problem and simply solve

max
ϕ

E(πR) = ϕ · (q + 1/2− ϕ)− C(ϕ) (2)

The optimal ϕ∗ is given by the solution of q + 1/2 = C ′(ϕ) + 2ϕ, yielding the following:

Proposition A1. The friendship proportion chosen by consumers is increasing in quality and

decreasing in the cost of content consumption. In the case of quadratic content consumption costs

of C(J) = (c/2)J2, we have ϕ∗ = min
(

1, q+1/2
c+2

)
.

This result is similar to that in the basic model’s benchmark with the only difference being the

functional form.

B.2 Filtering

We now move to examine the case of a filtering algorithm at work. Compared to the basic model,

there is an additional consideration. Since the receiver cost for each consumed message is different,

and the receiver’s utility is affected by it, a good algorithm will take that into account. Hence, we

assume that all filtering algorithms track the number of items consumed by users and are informed

about the marginal cost of reading each successive item. In case of the Perfect Algorithm, for
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example, this implies that the algorithm sets the threshold at t = ci, where ci is the marginal

cost of reading message i. Similarly, the threshold is ci + ϕ in case of the quality algorithm and

ci − q − 1/2 for the distance algorithm.

We first establish that similar to the benchmark, consumers always choose to read all content

available in equilibrium.

Lemma A2. Under any algorithm, J∗(ϕ∗) = ϕ∗αN

Proof. The proof is the same as without an algorithm. If there was an optimal ϕ∗ with J∗ < αϕ∗N ,

the consumer would be better off decreasing ϕ, because it decreases the expected distance of all

messages, while not decreasing any utility for the messages read.

Next, we examine the consumer payoff under filtering. For example, in the case of the perfect

algorithm, the expected payoff from item one is similar to the benchmark case:

Pr(U1 > c1)E(U1 − c1|ϕ,U1 > c1) (3)

For the second item arriving, it is slightly more complicated because if the first item has been

filtered out the algorithm uses the c1 for the threshold since the user has not read a single item.

Pr(U1 > c1) Pr(U2 > c2)E(U2 − c2|ϕ,U2 > c2)+

(1− Pr(U1 > c1)) Pr(U2 > c1)E(U2 − c1|ϕ,U2 > c1) (4)

In general, for the jth arriving item, the payoff is
∑j

i=1 PrF
j−i
j−1 Pr(Uj > ci)E(Uj − ci|ϕ,Uj > ci)

where PrF hj denotes the probability that h items have been filtered out of the first j arriving pieces

of content. Hence the total payoff from all content is

ϕαN∑
j=1

j∑
i=1

PrF j−ij−1 Pr(Uj > ci)E(Uj − ci|ϕ,Uj > ci) =

=

ϕαN∑
i=1

ϕαN∑
j=i

PrF j−ij−1 Pr(Uj > ci)E(Uj − ci|ϕ,Uj > ci) (5)

Proposition A2. The optimal friendship proportion choices satisfy ϕ∗NA = ϕ∗DA ≤ ϕ∗QA ≤ ϕ∗PA

and all of these quantities are increasing in q.

Proof. First, we show that ϕ∗NA = ϕ∗DA. This is similar to the basic model: distance filtering

does not filter any message in equilibrium since the user does not have any incentive to add more
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friends whose messages would be filtered out anyway. Given no filtering, the optimal ϕ is the

same as under NA. Next, we prove ϕ∗NA ≤ ϕ∗QA, by showing that the consumer payoff under the

quality algorithm has a non-negative derivative when setting ϕ = ϕ∗NA, yielding that the optimal

ϕ under QA must be at least as high as under NA. Increasing ϕ has two effects: i) it adds an

additional message to be potentially received by the user and ii) it reduces the expected payoff

from messages received even without the increase (due to the increased distance). The derivative is

a sum of this (typically) positive (i) and negative (ii) component. Clearly, the positive effect (i) is

larger under QA than under NA because the algorithm filters out low utility messages, hence the

expected benefit from an extra message is higher. Furthermore the negative effect (ii) is smaller

under the quality algorithm. Under NA the derivative is simply −1 for each message that arrives.

For the QA the derivative is larger than −1 (smaller in absolute value) for each message because

filtering decreases the sensitivity to a shifted distance distribution. Since the positive component

of the derivative is higher under QA than under NA and negative is smaller in absolute value,

and gives that the total derivative is 0 under NA, it must be positive under QA. We can show

that ϕ∗QA ≤ ϕ∗PA in the same fashion as PA is a better filtering mechanism, leading to a higher

payoff and less dependence on ϕ for each arriving message. Finally, we show that the optimal ϕ is

increasing in q for both the QA and PA. In these cases, the addition of an extra message (effect

i) clearly increases with q while the decrease in utility from existing messages (ii) does not change

with q. Hence, increasing q, leads to a higher optimal ϕ.

C Cost and Quality Heterogeneity

In our model all receivers and senders are symmetric resulting in a very regular and symmetric

equilibrium outcome. In practice there is likely much more heterogeneity that we do not account

for in our basic model. Here, we relax these assumption to demonstrate how our model could be

adapted to a more asymmetric setting. We assume that each receiver has a different consumption

cost ci drawn uniformly from the U(0, 2c) interval. Furthermore, we assume that there are K equal

sized segments with αN/K senders in each. Qualities are different between segments and equal

within segments such that every sender in segment k has quality qk. Although we only model

receiver actions here and consider sender qualities exogenous, the difference in qualities could be a

result of different sender costs between the different segments.
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As in our basic model, receivers will make decisions on how much content to consume and how

many senders to connect to. Here, we assume that each receiver will make a separate connectivity

decision for each sender segment. The connectivity of receiver i into segment k is denoted by ϕik.

Building on the results of our main model, we can derive the ‘in-degree’ of each segment and

each sender. We denote by indk the number of receivers that connect to a sender with quality qk in

segment k. This can be calculated as (1−α)N
∫ 2c
0 ϕ(x− qk) 1

2cdx where ϕ(x− q) is the connectivity

derived in Section 4 for a receiver with cost x when quality is q for any of the four algorithms. For

the sake of simplicity, we derive the degrees for c = 1. In the no algorithm, distance and perfect

algorithm cases we get

indNAk
(1− α)N

=
indDAk

(1− α)N
=



1 qk ≥k 7
2

1− (7/2−qk)2
8

7
2 > qk ≥k 3

2

(qk+1/2)2

8
3
2 > qk ≥k −1

2

0 −1
2 > qk

indPAk
(1− α)N

=



1 qk ≥k 3

1− (3−qk)2
8 3 > qk ≥k 1

(qk+1)2

8 1 > qk ≥k −1

0 −1 > qk

while in the quality algorithm case we obtain

indqkAk

(1− α)N
=



1 qk ≥k 7
2

1− (7/2−qk)2
8

7
2 > qk ≥k 5

2

1− (7/2−qk)2
8 + (5/2−qk)2

24
5
2 > qk ≥k 3

2

(qk+1/2)2

8 +
8qk−4q2k−1

48
3
2 > qk ≥k 1

(qk+1)2

12 + (qk−1/2)2
24 1 > qk ≥k 1

2

(qk+1)2

12
1
2 > qk ≥k −1

0 −1 > qk

Analyzing the functions, we see that indNAk ≤in dQAk ≤in dPAk . That is, just as the overall connec-

tivity in our basic model, the perfect algorithm produces the highest in-degree for a sender followed

by the quality algorithm and the no algorithm (and distance algorithm).

All the three functions are S-shaped in qk. Higher quality senders therefore get more incoming

connections. This shows a more realistic representation of a social network where some nodes are

more popular. The reasons for popularity can be multiple-fold, but a common argument is that
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some senders produce better quality due to lower costs. Heterogeneous costs therefore lead to

skewed degree distribution with a number of more popular nodes. Due to the S-shaped function

the degrees can be even more skewed than the qualities.

The out-degrees in our heterogeneous model also vary due to the content consumption costs.

Receivers with lower cost will connect to more senders (from each segment). Depending on the

dispersion of these costs the degree-distribution can be more or less skewed.

Finally, we note that skewed degrees and less than full connectivity are likely to hold in the

full equilibrium with endogenous quality choices. Consider an example where all but one segment

of senders has prohibitively high production costs leading to qk = 0 for ∀k 6= H. Segment H has

very low or zero production cost, leading to an arbitrarily high qH . In this case (with receiver costs

distributed as U(0, 2)), every receiver connects to all senders in segment H, but only to a portion

of senders in the rest of the network (1/4 for NA, 1/3 for QA, 1/2 for PA and these numbers

could even be lower if we assumed that zero quality investment leads to less than 1/2 expected

quality). Since there is only one high quality segment out of many, the overall connectivity level

is strictly less than 1 for all algorithms. Although this is an extreme example, we speculate that

the equilibrium quality outcome depends continuously on the sender production costs parameter

space, leading to less extreme interior solutions with proportional connectivity.

D Distance Heterogeneity

In this section we focus on cases where the preference for distances of content items may depend on

the location of the senders. This allows us to analyze markets with inherent polarization between

segments of the population, as well as test our model for robustness of results when costs of content

consumption are non-linear.

D.1 Segmented Senders

Suppose the senders can be segmented into two segments, a close segment (1) and a far segment

(2). The distance of content generated by segment 1 is distributed U [0, 2ϕ] if ϕ ≤ 1/2 and U [0, 1] if

ϕ > 1/2, while the content in segment 2 is distributed U [1, 2ϕ] if ϕ > 1/2. The content a receiver

sees is generated randomly by the users in these segments. Hence, the distances a receiver observes

is a mixture of the distances from each segment weighted by the size of each segment. If they set
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ϕ ≤ 1/2, they observe content from segment 1 with probability 1. If they set ϕ > 1/2, they observe

content from segment 1 with probability 1/2
ϕ and from segment 2 with probability ϕ−1/2

ϕ .

A straightforward analysis of the resulting mixture CDF of the distance distribution leads to

the following result:

Lemma A3. The mixture distribution of distances from the two segments has the same CDF as

the distribution U [0, 2ϕ] for any 0 < ϕ ≤ 1.

Notably, Lemma A3 generalizes to any number of segments with this mixture structure.1 Given

segments numbered k = 1, . . . ,m each having a distance distribution U [2(k−1)m ,min(2km , 2ϕ)], the

mixture distribution of distances where each sender has a probability of min(k/m,ϕ)−(k−1)/m
ϕ of

appearing in the receiver’s content feed equals U [0, 2ϕ]. Hence, the results of the paper hold for

any finite segmentation of the market. Specifically, the results hold if each sender produces content

with a non-random distance, but a-pariori the receiver would not know from which receiver they

will read messages before logging onto the social network.

D.2 Polarized Receivers

A second analysis we perform looks at the case of a polarized market, where receivers may have

strong preferences not to read content of a specific type. For example, consumers may be unhappy

if they read content that does not match their political ideology. Using the same two segment

model introduced above, we now assume that the cost of reading an item from segment 1 is c1 and

reading an item from segment 2 costs the recevier c2, with c2 > c1. Performing the analysis in the

benchmark (NA), PA and QA cases, we arrive at the following result.

Proposition A3. When the cost c2 > c1:

• ϕ∗PA ≥ ϕ∗QA ≥ ϕ∗NA.

• The utility of the receiver is highest in the PA case, intermediate in the QA case, and lowest

in the NA case.

• There is an intermediate range of qualities for which the receiver does not connect to additional

senders if quality increases, and only connects to all senders in segment 1.

1The proof stems from a straightforward sum of piece-wise segment CDFs.
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Proof. In the benchmark case (NA), the expected utility of the receiver is:

E[πNAR ] =


ϕαN 1+2(q−ϕ−c1)

2 0 < ϕ ≤ 1/2

αN(c2−c1+ϕ(1+2q−2ϕ−2c2))
2 1/2 < ϕ ≤ 1

(6)

The optimal connectivity ϕ∗NA equals:

ϕ∗NA =



0 c1 > q + 1/2

1−2(c1−q)
4 q − 1/2 < c1 ≤ q + 1/2

1/2 c1 ≤ q − 1/2 < c2

1−2(c2−q)
4 q − 3/2 < c2 ≤ q − 1/2

1 c2 ≤ q − 3/2

(7)

When using the perfect algorithm (PA), the platform will filter content from segment 1 if it has

utility above c1 and from segment 2 if it has utility above c2. The resulting expected utility of the

receiver is:

E[πPAR ] =

ϕαN
∫ 2ϕ

0

∫max(c1+D,q+1)

max(c1+D,q)
Q−D−c1

2ϕ
dQdD 0 < ϕ ≤ 1/2

ϕαN
(∫ 1

0

∫max(c1+D,q+1)

max(c1+D,q)
Q−D−c1

2ϕ
dQdD +

∫ 2ϕ

1

∫max(c2+D,q+1)

max(c2+D,q)
Q−D−c2

2ϕ
dQdD

)
1
2
< ϕ ≤ 1

(8)

Solving for the optimal connectivity ϕ∗PA results in:

ϕ∗PA =



0 c1 > q + 1

1+q−c1
2 q < c1 ≤ q + 1

1/2 c1 < q < c2

1+q−c2
2 q − 1 < c2 ≤ q

1 c2 ≤ q − 1

(9)

Finally, as the quality algorithm does not observe individual distances of senders, it cannot

infer the cost of consuming a content item for each receiver. When ϕ < 1/2, the QA algorithm will

therefore filter items with quality lower than c+ϕ as before, however, when ϕ > 1/2, the algorithm

will filter items with quality below the expected distance plus the expected cost, t∗QA = c1−c2
2ϕ +c2+ϕ,

resulting in the profit:

E[πQAR ] =


ϕαN

∫ 2ϕ

0

∫max(c1+ϕ,q+1)

max(c1+ϕ,q)
Q−D−c1

2ϕ
dQdD 0 < ϕ ≤ 1/2

ϕαN
(∫ 1

0

∫max(t∗QA,q+1)

max(t∗
QA

,q)
Q−D−c1

2ϕ
dQdD +

∫ 2ϕ

1

∫max(t∗QA,q+1)

max(t∗
QA

,q)
Q−D−c2

2ϕ
dQdD

)
1
2
< ϕ ≤ 1

(10)
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The maximization over ϕ results in:

ϕ∗QA =



0 c1 > q + 1

1+q−c1
3 q − 1/2 < c1 ≤ q + 1

1/2 c1 < q − 1/2 < c2

1
4 + q−c2

2 q − 3/2 < c2 ≤ q − 1/2

1 c2 ≤ q − 3/2

(11)

A comparison of the resulting connectivity shows that ϕ∗PA ≥ ϕ∗QA ≥ ϕ∗NA. Plugging in the

equilibrium connectivity into the utility of the receivers, we find that π∗R,PA ≥ π∗R,QA ≥ π∗R,NA.

The first two items of Proposition A3 shows that our results are robust to market polarization

where consumers have a strict preference for content from senders with closer distances to them.

As before, the perfect algorithm is the most efficient in increasing connectivity and receiver utility,

followed by the quality algorithm.

The last item shows that because there is a gap between the costs of consuming content from

segment 1 vs. 2, there will be a range of qualities for which receivers will not increase connectivity

even if senders increase the quality of their content, until quality is high enough. The intuition is

that once the receiver has connected to all senders in segment 1, connecting to additional senders

will lower utility (because of the increased cost), unless quality is high enough for this additional

connectivity.

An implication of this result is that when consumers have polarized preferences, although cura-

tion algorithms increase connectivity, they do so only in a weak sense. For certain ranges of qualities

of content, algorithms will have no impact. Moreover, even if the polarizing content provider in-

creases the quality of their content to attract more readers, many receivers will still prefer to not

follow them and ignore their content, until there is a dramatic improvement in quality. As the proof

of Proposition A3 shows, there is a range of qualities where connectivity is “sticky” at 1/2 for the

QA and NA cases. In this range, the perfect algorithm drives connectivity of either 1/2 or higher,

and hence produces a lower hurdle for senders to increase connectivity in a polarized market.
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E Impressions vs. Likes

When the utility of the sender depends on the number of impressions receivers consume, their

utility is:
ϕN

2
Pr(s ≥ t)− kq (12)

When no curation algorithm is in play, Pr(s ≥ t) = 1, and the sender’s optimal quality to set is

q∗NA = 0. As a result, the equilibrium connectivity will be ϕ∗NA = 1−2c
4 when c < 1/2, and ϕ∗NA = 0

when c ≥ 1/2. The maximum connectivity is ϕ∗NA = 1/4.

When the quality algorithm is being used by the social network, we can use the value of t∗

developed for the receiver side to calculate:

Pr(sQA ≥ t∗QA) =


2ϕ c+ ϕ ≤ q

2ϕ(q − c+ 1− ϕ) 0 < c− q + ϕ < 1

0 c− q + ϕ ≥ 1

(13)

Plugging into the sender’s profit function, it can be written as:

πQAS =


−kq c− q + ϕ ≥ 1

q(Nϕ2 − k) +Nϕ2(1− ϕ− c) 0 < c− q + ϕ < 1

Nϕ2 − kq q ≥ c+ ϕ

(14)

Hence, if Nϕ2 − k < 0, then q∗QA = 0, and otherwise, q∗QA = c + ϕ (which is the filtering

threshold for the QA algorithm), as long as Nϕ2 − k(c+ ϕ) > 0 (in which case q∗QA is again zero).

Using the results of the equilibrium levels of ϕ∗QA from Section 4.3, we find that q∗QA = c + 1/2

when k ≤ N
4(c+1/2) and zero otherwise. Correspondingly, ϕ∗QA = 1/2 when k ≤ N

4(c+1/2) and 1−c
3

when k is larger.

When the perfect algorithm is being used, the only part of the first order condition which may

result in a maximum yields:
N

2
ϕ(c− q + 2ϕ) = k (15)

Using the receiver’s side result for ϕPA, we arrive at the solution q∗PA = c− 2k
N + 2 and ϕ∗PA = 1.

The results replicate the results found in the full model where senders benefit from receiving

“likes”. The quality and connectivity under PA is higher than under QA which in turn is higher

than under NA.
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F Numerical Solution to the Platform’s Algorithm Selection

Finding the numerical solution to the platform’s optimization problem is not straightforward for

two reasons:

1. An algorithm is described by a two dimensional parameter (βQ, βD).

2. Given an algorithm, it is not always possible to find the profit maximizing quality the Sender

will set without numerically searching for equilibria (instead of solving first order conditions).

To simplify the task, we first prove the following Lemma:

Lemma A4. The algorithm parameters βD and βQ can be represented by a single parameter β =

βD
βQ

.

Proof. The score s = βQ ·Q−βD ·D only plays a role in the filtering when the platform determines

if s ≥ t and whether an item passes the filter or not.

As the proof of Proposition 9 shows, there are two possible values of t the platform will set:

βQ(c+ ϕ)− βDϕ and
βQ(2βDc+(βQ−βD)q)+2βDϕ(βQ−βD)

βD+βQ
.

By replacing βD with βD = ββQ, the first condition can be written as:

s ≥ t ⇐⇒ βQ ·Q− βD ·D ≥ βQ(c+ ϕ)− βDϕ (16)

⇐⇒ Q− βD ≥ c+ ϕ− βϕ (17)

while the second can be written as:

s ≥ t ⇐⇒ βQ ·Q− βD ·D ≥
βQ(2βDc+ (βQ − βD)q) + 2βDϕ(βQ − βD)

βD + βQ
(18)

⇐⇒ Q− βD ≥ (2βc+ (1− β)q) + 2βϕ(1− β)

β + 1
(19)

Hence, every algorithm where βQ 6= 0 can be represented using a single parameter β. Because

we have seen that setting βQ = 0 applies the distance algorithm, which is equivalent to not using

an algorithm, we can focus only on the cases of βQ 6= 0.

The lemma says that two filtering algorithms represented by (βQ, βD) and (β′Q, β
′
D) are equiv-

alent in equilibrium outcomes if
β′D
β′Q

= βD
βQ

.

Hence, in our numerical analysis we focus on finding the optimal value of β (the ratio between βD
and βQ that maximizes the receiver’s utility in equilibrium). To resolve the second issue limiting
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calculation of an equilibrium, we focus on the case of r = c = 0 which allows calculating the

symmetric first order condition the Senders face. When r = c = 0, and when 0 ≤ β ≤ 1, the

symmetric first order condition of the Sender depends on whether ϕ < 1 or ϕ = 1. When ϕ < 1 it

can be written as:

(−2 + q − βq + 2k(1 + q))/(−3 + β) = 0 1 + β + 2βq <= 2q

((k(1− 2q)2)/β + 2(−3 + β)(−2 + q − βq)− 2k(5 + 6q + 4q2)+

βk(5 + 4q(2 + q)))/(2(−3 + β)2) = 0 (−2 + β)q ≤ −1 and 1 + β + 2βq > 2q

6+k+(−2+β)β(−2+5k)−12q−4kq+4β(4−3k+β(−1+2k))q+4(−1+β)2kq2

2(−3+β)2β
= 0 otherwise

(20)

and when ϕ = 1 the first order condition is:

2− 2k − q = 0 1 + β ≤ q

2− q + (k(β2 + (−1 + q)2 − 2β(1 + q)))/(2β) = 0 q < 1 + β and q > 1

2+k−2βk+2(−1+β−k)q
2β

= 0 q < 1 and (β + βq < 1 and ((β = q and β + 2βq = 1) or (β + 2βq > 1 and β ≥ q)))
2+k−2βk+2(−1+β−k)q

2β
= 0 q < 1 and (β + 2βq > 1 and β ≥ q and (β + q > 1 or β + βq > 1))

2+2(−1+β)q+k(β2+(−1+q)2−2β(1+q))
/

2β = 0 otherwise

(21)

Using these closed forms and the receiver’s equilibrium connectivity and utility that can be

found in the proof for Proposition 9, we can calculate, for each value of β the equilibrium receiver’s

utility, and thus find the optimal value the platform will set for β.

G Endogenous Sender versus Receiver Decision

An alternative strategy to increasing the quality of her content is for a sender to increase the

amount of messages she sends. Senders may also choose to become receivers if competition is so

strong that the utility from receiving surpasses that of sending.

We note that this scenario might not necessarily be more realistic than the one with an exogenous

share of senders, as many times on social media content producers are professional organizations who

cannot switch to being receivers. To analyze this scenario, we allow consumers to be either a sender

or a receiver in each content consumption/creation opportunity. We operationalize this decision

by letting consumers set α endogenously while simultaneously deciding on ϕ and q. Effectively, we

are considering consumers as mixing between sending and receiving. In this case, consumers will

set α that makes them indifferent between reading and sending one content item.2 Following the

2This setup can be easily extended to assuming there is an “exchange-rate” between the utility from sending one
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derivation in Section 4 the expected utility from reading one item Pr(Sj > t)E[Uj − c|Sj > t] does

not depend on α.3 Consequently, the decision of the platform on the filtering threshold t as well as

the decision on the connectivity ϕ will not change.

Section 6 shows, however, that the utility from sending one item depends on α in two ways: a

higher α (1) increases competition for likes and (2) decreases the number of potential readers for an

item. Taking these effects into account, the consumers solve the following optimization problem:

ϕ∗ = arg max
ϕ

E[πR] = arg max
ϕ

JPr(Sj > t)E[Uj − c|Sj > t] (22)

q∗ = arg max
qj

E[πS ] = arg max
qj

ϕ(1− α)NE[
Pr(Uj > r and Sj > t)

J
]− kqj (23)

subject to:

E[πS ] = Pr(Sj > t)E[Uj − c|Sj > t] (24)

Our analysis focuses on the case of r = c = 0, and yields the following result:

Proposition A4. When consumers set ϕ, q and α simulataneously:

• q and ϕ increase with k, while α decreases with k.

• α∗PA > α∗NA > α∗QA for low values of k and α∗PA > α∗NA = α∗QA for higher values of k.

• There is a 0 < k̃ < 1 such that receiver utility is highest under the quality algorithm when

0 < k < k̃ and is highest under the perfect algorithm when k > k̃.

Proof. Denote a = 1−α
α . For each algorithm, we solve the first order conditions of the receiver over

ϕ and the sender over q, with the restriction that:

E[πs] = Pr(Sj > t)E[Uj |Sj > t] (25)

We then complete the solution for the range of parameters when ϕ = 1, q = 0, or when the

algorithms do not filter content and yield a corner solution.

item to reading one item. We assume a rate of 1:1 for parsimony.
3The NA case can be modeled as setting t = −∞.
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The NA solution results in:

ϕ∗NA =


1/4 0 < k ≤ 1

3

k
4(1−2k)

1
3
< k ≤ 4

9

1 4
9
< k ≤ 1

q∗NA =


0 0 < k ≤ 1

3

3k−1
2(1−2k)

1
3
< k ≤ 4

9

4
5−
√
9−8k

4
9
< k ≤ 1

a∗NA =


1/3 0 < k ≤ 1

3

k2

1−2k
1
3
< k ≤ 4

9

k +
√
9−8k+3

4
4
9
< k ≤ 1

The PA solution results in:

ϕ∗PA =

1/2 0 < k ≤ 1
3

1
12

(
3k +

√
9k(k + 2)− 3 + 3

)
1
3
< k ≤ 7

6

q∗PA =

0 0 < k ≤ 1
3

1
6

(
3k +

√
9k(k + 2)− 3− 3

)
1
3
< k ≤ 7

6

a∗PA =

1/3 0 < k ≤ 1
3

1
6
k
(

3k +
√

9k(k + 2)− 3
)

1
3
< k ≤ 7

6

The QA solution is:

ϕ∗QA =


1/2 0 < k ≤ 2

5

k
4(1−2k)

2
5
< k ≤ 4

9

1 4
9
< k ≤ 1

q∗QA =


1/2 0 < k ≤ 2

5

3k−1
2(1−2k)

2
5
< k ≤ 4

9

4
5−
√
9−8k

4
9
< k ≤ 1

a∗QA =


4(k+1)

7
0 < k ≤ 2

5

k2

1−2k
2
5
< k ≤ 4

9

k +
√
9−8k+3

4
4
9
< k ≤ 1

A simple analysis shows that:

1. α∗PA > α∗NA > α∗QA for low values of k and α∗PA > α∗NA = α∗QA for higher values of k.

2. q∗QA > q∗NA = q∗PA for low values of k, q∗QA > q∗NA > q∗PA for intermediate k’s and q∗QA =

q∗NA > q∗PA for high k’s.

3. ϕ∗PA = ϕ∗QA > ϕ∗NA for low values of k, ϕ∗PA > ϕ∗QA > ϕ∗NA for intermediate k’s and

ϕ∗NA = ϕ∗QA > ϕ∗PA for high k’s.

To compare receiver utilities, we calculate 1
1+aϕE[Uj |ϕ] for each algorithm. The results then
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follow from a simple comparison:

E[π∗R,NA] =


3
64 k ≤ 1

3

k2

16(k−1)2(1−2k)
1
3 < k ≤ 4

9

2(
√
9−8k+3)

(5−
√
9−8k)(4k+

√
9−8k+7)

4
9 < k ≤ 1

(26)

E[π∗R,PA] =


1
14 k ≤ 1/3

− k

k
(√

9k(k+2)−3+7
)
−2
√

9k(k+2)−3−3k2+6

1
3 < k ≤ 1

(27)

E[π∗R,QA] =



175
96(4k+11) k ≤ 2/5

2(2−5k)k−1
96(k−1)2(2k−1)

2
5 < k ≤ 4

9

8(2k(
√
9−8k−15)−33

√
9−8k+117)

3(5−
√
9−8k)

3
(4k+

√
9−8k+7)

4
9 < k ≤ 1

(28)

Proposition A4 shows, as before, that quality and connectivity are strategic complements on

the platform. Moreover, as the proof shows, the quality algorithm achieves the highest quality

among the three algorithms, as expected. When k increases, sending becomes more expensive,

which lowers the incentive to send. That process, however, leads to more receivers, which increases

the incentive to send. In equilibrium, the availability of more receivers as k increases drives an

increase in quality and connectivity.

Among all three cases, the perfect algorithm encourages the most sending in equilibrium. Be-

cause this algorithm filters the most content, it effectively lowers competition for likes, and increases

the incentive to send content. This increased sending, however, means there are less potential re-

ceivers who can like a content item. The outcome of this tradeoff is that in equilibrium, the perfect

algorithm yields low receiver utility (compared to the quality algorithm, that encourages higher

quality), until k is quite high, in which case the qualities are all low and the perfect algorithm gives

the receiver the highest utility through filtering.

H User Surplus

Although we do not explicitly model the profit goal of the platform in this paper, it is intuitive

that increased user surplus may attract more receivers and senders to the social network in the
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long run, resulting in higher profits for the platform.

To compare the surplus between the three different cases,4 we notice that when α = 1/2, the

surplus is proportional to the sum of the equilibrium expected utilities of one sender and one

receiver:

US = E[π∗S + π∗R] (29)

Moreover, the results in the previous sections have shown that the different algorithms have

different upper limits on the maximum cost of quality k for which it is profitable for the senders to

provide positive quality on the platform. Using these results we are able to compare equilibrium

surplus when we focus on low values of r. The following proposition summarizes the result:

Proposition A5. When 3/4 > r = c > 0:

• User surplus of the quality algorithm is equal to the user surplus without an algorithm when

k < 1/2. It is higher with a quality algorithm when 1
2 < k ≤ min( 7

8r+4 , 1). The surplus

without an algorithm is higher when 7
8r+4 < k ≤ 1.

• When 0 < k < min(
√

1
r2+4r

, 1), the surplus with the perfect algorithm is higher than the

surplus without an algorithm. When
√

1
r2+4r

≤ k < 1, the surplus is higher without an

algorithm than with the perfect algorithm.

• There is a range of r values and corresponding range of k values for which the quality algorithm

generates the highest surplus.

• When 3
8 < r < 3

4 and 7
8r+4 < k < 1, not using an algorithm generates the highest surplus.

Proof. When 3/4 > r = c > 0, 0 < k < 1, and N is large, the surplus functions are:

USNA =


3
2 − 2k 4k ≤ 1/4

1
16k2

1/4 < k < 1

(30)

USPA =



9k3−4
√
4k2+1k2+2

√
4k2+1−2

6k3
k ≤ 2/3

−6
√
4k2+1+k(−15

√
4k2+1+31k+15)+6

12k2
2
3 ≤ k < min(

√
1

r2+4r
, 1)

1
12(1− r)3 1√

r(r+4)
≤ k < 1

(31)

4The distance algorithm case is equivalent to the no algorithm case and we omit it.

16



USQA =



3
2 − 2k k ≤ 1

4

1
16k2

1
4 < k ≤ 1

2

1
4

1
2 < k ≤ 7

8r+4

2
27(1− r)3 7

8r+4 < k < 1

(32)

The proof follows from a simple comparison of the functions.

The proposition shows that the quality algorithm in general is unable to generate more surplus

than not using an algorithm at all, except for a range of intermediate values of k. The intuition

behind this result stems from the fact that when k is low, the market is in full connectivity and the

quality algorithm is unable to encourage more quality. When k is very high, however, it becomes

unprofitable for the sender to increase quality above zero because of the filtering, resulting in lower

user surplus. Only for intermediate values of k is the quality algorithm able to encourage higher

quality that results in increased surplus.

Examining the perfect algorithm, we see a more nuanced result. For low sender cost levels, the

perfect algorithm increases quality without hurting senders too much, resulting in a higher surplus.

When k is high, on the other hand, the payoff of senders under the perfect algorithm is lower than

not investing in quality at all, which lowers surplus below the NA case.

The last two points stem from the fact that the upper threshold of k for which a sender sets

positive quality is lowest for PA, highest for NA and intermediate for QA. Consequently senders

will provide lower quality with the PA when compared to the QA and NA above some k threshold,

resulting in lower user surplus. For a wide range of intermediate r values, we see that the quality

algorithm generates the most surplus, while for high values of r, the highest surplus is generated

without an algorithm, because of this impact on the upper k threshold.

An important implication of this result is that using curation increases surplus only if combined

with a strategy to reduce the cost of creating high quality content for platforms. This may explain,

for example, why some platforms which have added novel content creation features (such as Insta-

gram filters or Facebook’s 360◦ photos), are able to maintain a large following and high levels of

content creation despite applying algorithms that limit the exposure of content by receivers.

Figure A1 illustrates the three cases. It is clear that for most of the range of k the perfect
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algorithm generates more surplus than the quality and the no algorithm cases, a result which is

reversed for very high values of k. The positive difference between the quality and the no algorithm

cases is also evident, but as can be seen, it is small, mostly because the effect of the increased

quality by the quality algorithm comes into play for high values of k, where the difference created

in the equilibrium qualities and connectivity is small.

Figure A1: User Surplus
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Left: function values; right: difference from the no algorithm case.

r = c = 1/2.

I Popularity Filtering

We examine the case in which the platform cannot directly observe quality, but instead uses the

popularity of a given post to infer it. This is potentially a more realistic representation of how filter-

ing is operationalized as responses to content are often used as proxies for quality. There are many

complicating factors when examining feedback-based systems, from the exploration-exploitation

tradeoff to dynamic issues such as herding. We assume most of these away and examine popularity

filtering in a mostly rigid and static setting to be able to compare with the rest of our results.

For the sake of parsimony in this extension we only analyze the receiver actions and treat sender

actions as exogenous.

To filter based on an item’s popularity, we assume the platform does not observe the quality

or distance of an item from a receiver, but first observes the liking behavior of a large sample of
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M receivers. The platform can make inference on the item’s quality based on the liking behavior

in those M instances. As each receiver consumes J messages and picks one to like at random,

the share of “likes” will be between 0 and 1/J , depending on the utility the item provides. The

platform will then use these inferences for filtering. We specifically assume that no filtering is done

by the platform until the scoring phase has been completed.

Since the platform does not observe the distance, it can only use the information from likes

to infer quality. Observing a like tells the platform that the utility the user obtained was at least

r. Upon observing a sufficiently large amount of likes with different unobserved distances, the

platform infers the posterior distribution of quality from the percentage of observations with a like.

If 1/J share of the observations show a like then quality is uniformly distributed between r+2ϕ and

q+ 1. If none of them have a like, then quality is distributed ∼ U [q, r]. When a positive 0 < ρ < 1

proportion of 1/J of the observations indicate a like then the quality is r + 2ϕρ. That is, when

quality falls in the [r, r + 2ϕ] interval the platform can perfectly infer quality given a sufficiently

high number of observations.

The filtering rule for a given receiver is only dependent on ρ. When ρ = 0, the expected quality

is (q+ r)/2 as long as r ≥ q while the expected distance is ϕ as usual. Hence content is filtered out

if and only if r/2−ϕ− c < 0. When ρ > 0, the quality is perfectly inferred from ρ as Q = r+ 2ϕρ

and content is filtered if and only if r+ϕ(2ρ−1)− c < 0. As a consequence a content item is never

filtered out if ρ > 1/2. Deriving the expected receiver utility from the above and maximizing, we

obtain the following results:

Proposition A6. If M is sufficiently high and 1/2 > c− q > −1/2 then:

ϕ∗POPA =


q−c+1

3 = ϕ∗QA if c− q ≤ r − q ≤ 1+2(c−q)
3

q−c
2 + 1+r

4 > ϕ∗QA if 1+2(c−q)
3 ≤ r − q < 2(c− q)− 1−

√
5−8(c−q)
2

q−c
2 + 1

4 = ϕ∗NA if 2(c− q)− 1−
√

5−8(c−q)
2 ≤ r − q ≤ 1

(33)

• Receiver utility is decreasing whereas the average distance is first increasing then decreasing

in r.

• When c− q ≤ −1/2 or c− q ≥ 1/2, we always have ϕ∗POPA = ϕ∗NA.

Proof. We derive the expected utility of a consumer from a received message in three cases and

multiply with ϕ to get the total from all messages. In case (i) when ϕ ≥ r − c + q the expected

19



utility is the same as in the quality algorithm case because all messages with quality below r are

filtered out in both cases. Above r the filtering rule is the same. Therefore, the total expected

utility is ϕ(1−ϕ−c+q)2/ (as long as q < ϕ+c < q+1). In case (ii) when r−c+q > ϕ ≥ r/2−c+q,

the filtering threshold becomes r and the expected quality of an unfiltered message is (r+ q+ 1)/2,

therefore the total expected utility from messages is ϕ(q+ 1− r)(r+ q+ 1− 2c− 2ϕ)/2 (as long as

q < r < q+1). Finally, in case (iii) when ϕ < r/2−c+q, all messages are unfiltered and we calculate

the expected utilities distinguishing between whether the quality is above or below r. Above r, we

get the same formula as in case (ii). When quality is below r, the expected quality is (r+ q)/2 and

the total expected utility becomes ϕ(r− q)(r+ q− 2c− 2ϕ)/2 +ϕ(q+ 1− r)(r+ q+ 1− 2c− 2ϕ)/2.

Overall the utility function can be pieced together from the above three cases with case (i) being

cubic and cases (ii) and (iii) being quadratic each with a unique maximum. When r ≤ (1+2c+q)/3

then case (i)’s maximum dominates. Above this threshold we need to compare the local maxima

of cases (ii) and (iii). They are equal when r = 2c− q− (1−
√

5− 8c+ 8q)/2. Below this threshold

case (ii)’s local maximum is higher, above, case (iii)’s is higher. Calculating the maximum values

shows that they are decreasing in r. Finally, since the average distance of a received (and unfiltered)

message is simply ϕ, we obtain the stated result.

The results indicate that the liking threshold impacts receiver utility and connectivity substan-

tially, driven by the information content of a like. When r = c, the platform can essentially perfectly

observe quality5 and the outcome is equivalent to that of the quality algorithm. As r increases the

perfect inference breaks down. This does not immediately lead to a reduction in receiver utility as

the average distance is high enough that low quality messages below r would be filtered out even

if their quality were perfectly observed. Hence an imperfect observation does not have an impact.

However, as r reaches a higher threshold the utility will start to decrease. Surprisingly, this

leads to an increase in connectivity. The reason is that imperfect quality observations make the

platform more conservative for low utilities and the platform will filter out messages that it would

not have had, had it observed their quality perfectly. This incentivizes receivers to reach out further

and set a higher ϕ.

As r becomes even higher the positive feedback can no longer be sustained and the outcome

5For qualities above r+ 2ϕ the platform only knows that quality is higher than this threshold, but these messages

will never be filtered out
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falls back to the level of the no algorithm case. Hence connectivity drops and receiver utility is

reduced further.

In summary, we see that connectivity is non-monotonic in the liking threshold. First it matches

the quality algorithm, then it further increases before dropping back to the no algorithm levels.

While receiver utility is decreasing, the average distance of messages received is also non-monotonic

and it is the highest in the intermediate range for a non fully informative quality signal.

Overall, the results in this extension tell us that popularity-based filtering can be an alternative

to direct observation of quality information and may even have a side-effect of increasing connec-

tivity above the levels of what we get in the quality algorithm. There are two important factors

regarding the informativeness of consumer actions. One is that the platform has to observe a high

enough number of consumer responses for each content item. In our model this can be ensured by

having a high share of receivers, e.g., a low α. This ensures a sufficiently high number of observa-

tions without significantly impacting receiver utility due to the low overall percentage of messages

in the scoring phase. The other one is that a consumer action has to be a good signal of quality. If,

for example, the platform observes threshold-type signals akin to likes, the threshold has to be in

the relevant range for filtering in order to provide the most information about expected consumer

utilities.
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