
Online Appendix - Beyond the Last Touch: Attribution in Online

Advertising

OA.1 Multiple Global Bidders

The analysis of two competing global bidders is complex because of the need to find an asymmetric

Bayesian equilibrium with two dimensional strategies for each player. Since we are unable to find

a closed-form solution for this problem, we use numerical analysis to find the equilibria bidding

strategies and compute firm profits.

Section OA.1.1 details the algorithm we use to numerically analyze the Bayesian equilibria when

one global attributing advertiser is competing with a second global advertiser. It should be noted

that finding Bayesian Nash equilibria is computationally hard (NP-Complete), which limits the

scope of parameter values we are able to numerically test.

Our analysis focuses on cost per click (CPC) auctions with click through rate (CTR) adjusted

bids. In these auctions, advertisers pay for an impression only if the consumer clicked on an ad.

Their payment is an adjusted bid of the second highest bidder, and this adjustment is done using

the expected CTR that the publisher observes. Using this model, a conversion of the consumer will

be a click on an ad.

Specifically, when advertiser 1 bids b11 and advertiser 2 bids b21 at the publisher which is visited

first, advertiser 1 will win the auction if γb11 > γb21 and will pay γb11
γ if the consumer clicks on

the ad (which happens with probability γ). When bidding at the publisher which is visited second,

however, the advertiser will win the auction if γE1 b12 > γE2 b22, and pay
γE2 b22
γE1

if she wins the auction

and the consumer clicked the ad.

γE1 is the expected CTR if the consumer is exposed to an ad at the second publisher, but

that CTR depends on exposure at the first publisher. Thus, if the first publisher is visited with
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probability p1, the CTR at the second publisher is:

γE1 = p1I[γb11 > γb21]γ(1 + d) + p1I[γb11 ≤ γb21]γ + (1− p1)γ = γ (1 + p1I[γb11 ≤ γb21]d) (1)

Similarly:

γE2 = γ (1 + p1(1− I[γb11 ≤ γb21])d) (2)

The externality of the first impression on the second impression now comes into play in two

aspects compared to the CPM case. The first impact is on the revenue, exactly as was the case

for the CPM case. The second impact, however, is on the cost. Because d is negative, when an

advertiser wins the first impression, the second publisher expects a lower CTR from that advertiser,

and thus adjusts their bid downward in the auction. That means that advertisers have an incentive

to lower their bidding strategies at the first publisher in order to avoid this penalty when competing

at the second publisher.

When comparing the equilibrium profits of the attributing advertisers, we ask what the relevant

benchmark is for comparison in terms of the second global advertiser. Depending on the choice

of attribution (or lack of) of the second global advertiser, the result may shift dramatically. We

therefore perform a comparison with two types of global advertisers – a weak advertiser that does

not know the state of nature in the campaign and behaves like an NA advertiser, and a strong

advertiser that has full information about the state of the world and behaves like an Opt advertiser.

In reality, global advertisers will have a mix of knowledge distributions, and as they apply more

sophisticated attributions algorithms, they will get closer to the Opt case.

Figure 1 shows the expected relative profit of each attributing advertiser to Opt advertiser

when playing against an NA advertiser (left) and when playing against an Opt advertiser (right).

A striking result emerges when comparing the left to the right panel. The relative profits in the right

panel are higher than one, meaning that all attributing advertisers (including the NA advertiser)

make higher profits when they have less information or a less efficient attribution scheme than if

they had full state information.

This result exemplifies the prisoner’s dilemma-like effect of increasingly improving advertising

measurement in a competitive market – as more advertisers become more efficient, the competition

becomes stronger which results in lowered profits (and higher revenue going to the publishers).
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Essentially, less efficient attribution methods allow advertisers to soften the competition in a multi-

publisher advertising market.
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Figure 1: Expected relative profit of the Sh, LT and NA advertisers to the Opt advertiser. γ = 1,
pH = 1, pL = 1/2 and d = −1/2.

When focusing on the left panel, we see that advertising profits are no less than 90% of the

profits achieved for the Opt player, implying that the attribution methods are quite efficient. We

do see however that in this case, the NA player, which is a weaker bidder in equilibrium, makes

higher profit.1 Stronger bidding yields lower profit when using attribution, though the differences

are not as significant as when the competing advertiser has full knowledge.

Finally, we compare between the two attribution methods LT and Sh to the NA method.

When competing with an NA advertiser, both methods yield similar profit,2 which is lower than

Opt for low and high conversion values. When competing with an Opt advertiser, we see a result

that echoes the previous results of our analysis in the CPM case – The profit under the Shapley

value is higher for lower values of v, and the profits are higher under NA for higher values of v.

We also do not find a case where the LT profits are the highest, but there are cases when the LT

profit is higher than the Sh profit, namely for high values of v.

1Further details of the equilibrium bids and analysis are provided below.
2The profits are not identical, but are very close. We attribute the difference to limited machine precision.
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OA.1.1 Algorithm

Finding pure strategy Bayesian-Nash equilibria (BNE) is an NP-Complete problem as shown by

Conitzer and Sandholm (2003, 2008), and approximating these equilibria efficiently is still an active

research field in computer science and economics. A classic algorithm for finding BNEs is the ficti-

tious play algorithm (FP) due to Brown (1951), also known as an iterated best response algorithm.

In fictitious play, each player is initially assigned a pure strategy, and the algorithm proceeds in

rounds. In each round players take turns in playing against the empirical mixed strategy of the

previous actions of the opposing player.

Specifically, suppose there are 2 players, i and j. The players have types θi and θj drawn from

the same prior probability with density f(θ), and can take actions bi and bj from a set of actions

B with size B. The payoffs of player i is denoted ui(bi, bj |θi, θj) and similarly for player j uj is

defined.

Suppose at round t it is player i’s turn to play. Denote player j’s sequence of previous actions

as bj(1|θj), . . . , bj(t − 1|θj). The empirical mixed strategy of player j and type θj is defined by

the distribution sj(t− 1|θj) over actions bk ∈ B with sj(t− 1|θj) = (p1(t− 1|θj), . . . , pB(t− 1|θj))

and pk(t− 1|θj) =
∑t−1
r=1 I(bj(r|θj)=bk)

t−1 . Using this definition, player j’s empirical mixed strategy is a

distribution for each type θj .

Given sj(t− 1|θj), player i plays her pure strategy best response:

bi(t|θi) = arg max
b∈B

Eθj [
B∑
k=1

ui(b, bk|θi, θj)pk(t− 1|θj)]

Given player i’s play, player j then recomputes the empirical mixed strategy, and best responds

to it, and so forth. The algorithm stops when the best responses converge such that bi(t|θj) =

bi(t− 1|θj) and bj(t|θj) = bj(t− 1|θj). It is easy to show that in this case the resulting convergent

actions are a BNE of the game.

Fictitious play is not guaranteed to converge for generic games, and even if it does converge,

the convergence time is unknown a-priori in the general case. Moreover, since estimation is run on

computers with finite precision (and finite type or strategy spaces) for large games it is probable

that the algorithm will not converge even if it would have converged with infinite precision and

continuous type and action spaces.
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For this reason, the majority of work involving finding BNEs numerically focuses on finding

ε-BNEs. A pair of mixed (or pure) strategies si and sj is an ε-BNE if:

Eθj [ui(si, sj |θi, θj)] ≥ Eθj [ui(s, sj(θj)|θi, θj)]− ε

for every strategy s available to i, and similarly defined for j. Thus if the players can mix over

B, the equilibrium will be defined over mixed strategies, and otherwise it will be defined over pure

strategies. When computing ε-BNEs, the FP algorithm stops when the best response of each player

(and type) cannot improve their current payoff by more than ε. Our definition uses an ex-interim

definition of a BNE (where each player knows their type but not the opponent’s type). Alternatives

include an ex-ante definition where each player maximizes over their expected type as well. We

followed the literature with the most common definition used. Our analysis uses a value of 0.00001

for ε.

Our analysis makes use of the FP algorithm to find an ε-BNE with a finite action space. In this

setting, Rabinovich et al. (2013) show that if the type space is continuous, mixed strategies can be

converted to equivalent pure strategies and this fact can be used efficiently find ε-BNEs. Despite

the great progress made in that paper, the algorithm is still only able to compute the equilibria

for games with no more than 5 to 10 bid levels with one dimensional strategies. Since advertisers

in our game bid at two publishers, they will have two dimensional strategies, growing the action

space exponentially, which will disallow efficient computation of equilibria.

To resolve this issue we focus on computing equilibria in the attribution game with a discrete

type and action space. Because we are interested in comparing how different attribution methods

perform, we designate one player to be a Benchmark player in all four cases we compare (NA, LT,

Sh and Opt), and the second player uses one of the attribution methods analyzed in this game.

The benchmark player is fully strategic and best responds to the actions of the attributing player.

We analyze two types of benchmark players, to get a sense of the “best” and “worst” case scenario

facing an attributing player. In the first scenario, the benchmark player does not have information

about the state of the world and bids using the same strategies in every state. Essentially, this is

an NA player. In the second scenario, we assume the benchmark player has full information about

the state of the world, and bids optimally for each state. Essentially in this scenario the benchmark

player is an Opt player.
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In our notation, we will denote π∗LT,NA as the equilibrium profit of a last-touch attributing player

playing against an NA global player, and π∗LT,Opt will denote the profit of a last-touch attributing

player playing against an optimal player.

The second choice we made are parameter values for γ, d, pH and pL. Estimating the ε-

BNEs using finite actions and types creates a tradeoff between accuracy, running time and space

considerations. The more refined the action and type spaces, the closer the resulting equilibrium

will be to the continuous space equilibria, but this comes at a cost of exponential growth in required

memory (and possibly runtime) of the algorithm. We would like to be able to set bid values such

that the advertiser can choose to bid in increments which represent the increments in conversion

values it faces in the campaign. The smallest increment in value for an advertiser will come from

the effect of the externality and will be γ · pH · pL · d · v. Thus, we let bids increase in increments of

γ · pH · pL · d · v, or have a resolution of 1
γ·pH ·pL·d·v per unit value. This means that the smaller each

factor in the multiplication is, the higher resolution for bid values we would require. We picked the

values γ = 1, d = −1/2, pH = 1 and pL = 1/2, that generate a resolution of 4 bid increments per

unit value. When setting the total number of values for a conversion to nv and the bid resolution

to r, the size of the action space available to an advertiser is (nv · r − 1)2. For 6 values and a

resolution of 4 bids that means an action space of 529 possible actions. The fully mixed strategy

of a player in this case will have 6× 529, or 3, 174 elements.

OA.1.2 Equilibrium Bid Analysis

To give more intuition for the results we analyze the equilibrium bids of the attributing global

player when they play vs. an NA and an Opt advertiser.

Figure 2 shows the equilibrium bidding strategies of the global attributing advertiser when they

compete with an NA global advertiser, and Figure 3 shows the strategies in equilibrium when

competing with an Opt advertiser. The bids for states 2H and 2L are symmetric.

As we can see, when competing with an NA advertiser, attribution causes stronger bidding at

the first publisher and weaker at the second compared to the bidding of the Opt advertiser. The

NA advertiser bids less than their value at both publishers, but the bids are quite close to the click

value. We also see that both attribution schemes we analyze yield very close equilibrium bidding

strategies, which is why we do not see too much difference between their profits in Figure 1. When
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looking at the competition with the Opt player, however, we see that the Shapley value encourages

stronger bidding when the first publisher visited has visit propensity pL, and that both attribution

schemes bid weaker than Opt and NA for how values at the second publisher. This explains why

we see higher profits for the Shapley value at lower values, and higher profits for the NA scheme

in higher values, as also found in the analysis when competing with two local advertiser.

OA.2 Comparison to Models that Use Aggregate Data

When individual ad exposure data was not available, the advertisers could not tell how their ad

expenditures translated to ad exposures. This is similar to standard offline advertising campaigns

(Newspaper and TV), where there wasn’t usually accurate data about which individual consumers

were exposed to what ads that covers the entire market.3

In such cases, for example, media mix models were used to estimate the effectiveness and

impact of ad spending, but these effects were only estimated in aggregate and on average over

all consumers.4 The advantage of multi-touch attribution is that the additional data about ad

exposure and ad timing may be used as additional information in the estimation and optimization

processes. This should allow, for example, to properly compensate strategic publishers that may

have freedom in how ad impressions are allocated and maximize their own profit.

In the classic media mix setup, it is assumed that the advertising channels are not strategic and

the only change in the market are the budgets allocated to each channel. These classic marketing

response and optimization problems usually assume ad prices are exogenous and that competitors

do not respond to changes in budgets by a focal advertiser. A second difference between our setup

and the standard media mix setup is that we take into account the resulting equilibrium of ad

allocation and ad prices given the results of the measurement process by the advertiser.

To estimate the benefit of multi-touch attribution we would like to perform a similar analysis

to the one done in Section 5.3 and find the highest profit possible when employing an aggregate

data model in the measurement and optimization process.

Finding the best model is a complex problem (similarly to finding the best attribution solution),

3For example, most TV household advertising measurement is done on a sample, and not on the entire target
population.

4There are models that try to connect aggregate spending data with a sample of individual exposure data, and
these are close to an attribution model.
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but we are able to give an upper bound on how well the best model will perform using theoretical

results from team sharing problems. Nandeibam (2002) analyzes sharing rules in teams when the

production function of the team is common knowledge and has no uncertainty, and when the effort

of the team members is unobserved by the principal. In the case of advertising campaigns, the

team members are the publishers, and the fact that their effort is unobserved is equivalent to not

being able to observe the resulting ad allocation from a budget given to a publisher. Because a bid

at a publisher has a one-to-one mapping to a budget spend, we can use the bids in our model to

reflect the actions a publisher takes in the team.

The results of the analysis in Nandeibam (2002) show that when there is no market uncertainty,

the optimal sharing rule, which is equivalent to the attribution function in our model, is a function

which is linear in the output of the team (or the campaign). In other words, the famous result

in Holmstrom (1982) shows that a team sharing rule cannot induce the optimal allocation, while

Nandeibam (2002) finds the best result that can be achieved and the sharing rules that achieve

them.

We can use this result as an upper bound on the best aggregate model possible because it

assumes that the output function of the team is common knowledge. In an advertising campaign

the output function is unknown at the campaign design stage, which means this best case scenario

cannot be implemented under general conditions.

Using the results of this analysis and a numerical analysis5 we are able to show that the ratio

E[
π∗
MM
π∗
Opt

] has a minimum of 0.75. Comparing this value to the previous values 0.875 for last-touch

and Shapley value attribution allows us to put an estimate on the value of attribution methods in

increasing the profits of advertisers. This increase in value can be attributed to the additional data

available to the advertisers, and particularly, to the data on timing and ad exposure post campaign

which are available online.

OA.2.1 Details of Analysis

The following proposition, due to Nandeibam (2002) allows us to find the maximal profit of the

global advertiser without finding the optimal aggregate data model explicitly.6 We mention the

most relevant details and assumptions for our analysis.

5See section OA.2.1 of the Appendix for details.
6Nandeibam (2002) also details how this mechanism may be found, but in our case it doesn’t have a closed form.
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Proposition OA.2.1 (Nandeibam (2002) Proposition 3). Let U i(m, ai) be a team’s member utility

function, with m their payment in monetary terms and ai their action. Define U ij , j ∈ {1, 2} as

the derivative of U i with respect to variable j. Let f(a1, . . . , an) be the production function of the

team members.

Assume:

• (A1) f is strictly increasing and concave.

• (A2) U i is concave, strictly increasing in income and strictly decreasing in action.

Let (a, p) be an outcome (a the vector of actions, p the vector of payments) with ai > 0 for all

i.

Then (a, p) is implementable non-cooperatively if and only if (a, p) satisfies:

n∑
i=1

[
U i2(pi, ai)

U i1(pi, ai)fi(a)

]
= 1 (3)

Nandeibam (2002) further defines a non-cooperative implementation if there is a sharing rule

s(f(a)) such that pi = si(f(a)) and (a, p) is a Nash-equilibrium of the team.

In our campaign model, the production function is the revenue function r(b1, b2), the utility

functions of the team players are ui(m, b1) = m − ci(bi) and the payment sharing rule s are the

attribution functions a1(r(b1, b2)) and a2(r(b1, b2)) (without using additional data such as timing

or ad exposure).

Assumptions (A1) and (A2) hold for these functions, and as a result, we can use the condition

in Equation 3 to solve the following constrained maximization problem:

π∗AD(state) = max
b1,b2

π(b1, b2|state) s.t. (3) holds. (4)

Equation 3 translates in our model to the following condition:

b2
b1dpH+γ + b1

b2dpL+γ

v
= 1

This problem assumes that the profit function π(b1, b2) is known prior to the campaign (so a

contract can be signed based on the outcome), which is of course not the case in our model. We
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therefore conclude the result from this analysis will serve as an upper bound on the possible profit

achieved from an aggregate data model.

The result of the optimization π∗AD(state) does not have a tractable closed form, which is why we

use numerical optimization to estimate the ratio E[
π∗
AD
π∗
Opt

], which is then also minimized numerically.

Essentially, we are finding the MinMax of the problem numerically. The global minimization

over 5 parameters does not converge in a realistic time-frame, but a local minimization finds a ratio

of 0.75 when v = 1 at the parameter values γ ≈ 0.5, pH ≈ 0.666, pL ≈ 0.664 and d ≈ 0 . Thus

we can conclude that this can serve as an upper bound on the ratio when using an aggregate data

model.

OA.3 Fixed Externality Share (FES) Attribution

In this Section we will analyze a generic attribution mechanism we call Fixed Externality Share

(FES) Attribution that generalizes the last-touch and Shapley values method into a family of

attribution methods.

The definition of the Shapley value attributes the externality from winning both ad auctions

equally to both publishers, while last-touch attribution allocates the externality to the last publisher

visited by the consumers. In fixed externality share attribution, a share α of the externality is

allocated to the first publisher visited in a sequence of visits, and a share 1− α is allocated to the

second publisher visited, when 0 < α < 1.

When publisher 1 is visited first, for example, the FES attribution functions are:

AFES1 = p1γvGF1(bG1) + αp1p2dγvGF1(bG1)F2(bG2) (5)

AFES2 = p2γvGF2(bG1) + (1− α)p1p2dγvGF1(bG1)F2(bG2) (6)

It is easy to show that the Shapley value is part of this family with α = 1/2. Using this

definition, we can find the equilibrium bids and profits, and then maximize the resulting expected

profit with respect to α. This will give us the optimal FES scheme.

Finding the equilibrium in closed form is not possible for all parameter ranges. We therefore

limit the parameter space to pL = pH(1 − pH) and d+1
d+2 ≤ α ≤ 1

d+2 when d < 0. In this restricted
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space the profit functions are smooth without kinks and we can fully analyze the resulting bids and

profits.

Using these assumptions, we prove the following:

Proposition OA.3.1. When using FES attribution:

• Last-touch attribution is equivalent to FES attribution with α = 1
d+2 .

• FES attribution will never reach the optimal profit.

• When −1 < d < 0, pL = pH(1 − pH) and d+1
d+2 ≤ α ≤ 1

d+2 : Last-touch is never optimal, and

the Shapley value is the unique optimal FES attribution scheme.

Proposition OA.3.1 shows that Last-touch attribution is a part of the FES family (this is true

for the entire parameter space), and that any attribution scheme in this family will not be able to

achieve the optimal profit. The last item shows that in the limited parameter space we analyze,

which generally restricts the campaigns to low values of v, last-touch is never optimal while the

Shapley value is the uniquely optimal attribution scheme.

This result gives more credibility to the focus on the Shapley value as an attribution scheme, and

opens an interesting avenue for future research into the optimality of FES schemes under general

conditions.

OA.3.1 Proof of Proposition OA.3.1

To prove the first item we compare the equilibrium bids under Last-touch attribution to the equi-

librium bids under FES attribution.

We denote by b1,p1 the bid at the publisher visited first with propensity p1. We note this is not

publisher number 1 necessarily:

b1,p1 =
γv(p2v(α(d+ 2)− 1) + 1)

pHpLv2 ((1− 2α)2 + (α− 1)αd2 + (1− 2α)2d) + 1
(7)

b2,p2 =
γv(p1v(−2α− αd+ d+ 1) + 1)

pHpLv2 ((1− 2α)2 + (α− 1)αd2 + (1− 2α)2d) + 1
(8)

We then equate these bids to the last-touch bids and solve for α yielding αLT = 1
d+2 .

To prove the second item we equate the FES bids to the optimal equilibrium bids and find that

there is no α that solves the 8 equations.
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To prove the third item, we calculate the first derivative of the expected profit when we set
pL = pH(1− pH) and limit α such that d+1

d+2 ≤ α ≤
1
d+2 :

∂π∗
FES

∂α
= (9)

−
(2α− 1)γ(d + 2)2(pH − 1)p3Hv

4
(
pH

(
(pH − 1)v

(
((α− 1)α + 1)d2(pH − 2)pHv + d

(
(1 − 2α)2(pH − 2)pHv − 4

)
+ (1 − 2α)2(pH − 2)pHv

)
− 1

)
+ 2

)
2
(
(pH − 1)p2

H
v2

(
α2(d + 2)2 − α(d + 2)2 + d + 1

)
− 1

)3

(10)

Plugging in α = 1/2 yields zero, while plugging in α = 1
2+d is never zero.

Calculating the second derivative and plugging in α = 1/2 is always negative (in this range of

α), meaning that the Shapley value is a local maximum. α = 1/2 is also the only value in this range

that makes the first derivative vanish, and hence it’s a global maximum, concluding the proof.

OA.4 Delayed Conversions

Our model thus far has assumed that conversions (or clicks) happen immediately after an exposure.

In this section we drop this assumption. Delayed conversions happen when an ad influences a person

in their decision to convert, but the conversion happens later after the campaign ends. In the setup

of our campaign, a delayed conversion would mean that the revenue observed after a consumer is

exposed to an ad from the first publisher will always be zero.

In analyzing this scenario, we note that the timing of the conversion does not impact the optimal

allocation of ads with full information nor the allocation without attribution. The reason is that

in both cases the optimization considers only a single revenue function which is not split between

the publishers, and hence the timing of the conversion does not impact the result.

When the Shapley value is used for attribution, delayed conversions will also not impact the

attributed revenue per publisher. The reason for that is that the Shapley value takes the average

marginal contribution of the players in a cooperative game over all possible orders of player ar-

rivals. Consequentially, in our model the externality in every state is split equally between the two

publishers, and the timing of conversion does not impact the calculation.

The only analysis we need to consider is the impact on last-touch attribution profit. Examining

equations 8 and 9, with delayed conversions, ALT1 = 0, while ALT2 gets allocated all of the revenue.

Performing the equilibrium analysis shows that in this case the global advertiser bids zero at

the first publisher and γvG (her expected value) in the second publisher, essentially acting as a
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local bidder that changes their bid locations to always bid at the second publisher. The expected

profit of the global advertiser will be equal to the expected profit of a local advertiser, and the

relevant results from the previous sections will hold.

From the point of view of the publishers, however, since the advertiser always bids at the

second publisher, an advertiser which is later in the conversion funnel or one that can control the

timing of their ad displays will highly benefit from delayed conversions if advertisers use last-touch

attribution.
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Figure 2: Bids of the attributing global player when competing with an NA advertiser. γ = 1,
pH = 1, pL = 1/2 and d = −1/2.
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Figure 3: Bids of the attributing global player when competing with an Opt advertiser. γ = 1,
pH = 1, pL = 1/2 and d = −1/2.
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